Linear differential equations are of the form
where the differential operator L is a linear operator, y is the unknown function (such as a function of time y(t)), and the right hand side f is a given function of the same nature as y (called the source term). For a function dependent on time we may write the equation more expressly as
and, even more precisely by bracketing
The linear operator L may be considered to be of the form[1]
The linearity condition on L rules out operations such as taking the square of the derivative of y; but permits, for example, taking the second derivative of y. It is convenient to rewrite this equation in an operator form
where D is the differential operator d/dt (i.e. Dy = y' , D2y = y",... ), and the An are given functions.
Such an equation is said to have order n, the index of the highest derivative of y that is involved.
Sem comentários:
Enviar um comentário